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Abstract The presence of rich ENSO variability in the long unforced simula-1

tion of GFDL’s CM2.1 motivates the use of tools from dynamical systems2

theory to study variability in ENSO predictability, and its connections to3

ENSO magnitude, frequency, and physical evolution. Local Lyapunov Expo-4

nents (LLEs) estimated from the monthly NINO3 SSTa model output are used5

to characterize periods of increased or decreased predictability. The LLEs de-6

scribe the growth of infinitesimal perturbations due to internal variability, and7

are a measure of the immediate predictive uncertainty at any given point in the8

system phase-space. The LLE-derived predictability estimates are compared9

with those obtained from the error growth in a set of re-forecast experiments10

with CM2.1. It is shown that the LLEs underestimate the error growth for11

short forecast lead times (less than 8 months), while they overestimate it for12

longer lead times. The departure of LLE-derived error growth rates from the13

re-forecast rates is a linear function of forecast lead time, and is also sensitive14

to the length of the time series used for the LLE calculation. The LLE-derived15

error growth rate is closer to that estimated from the reforecasts for a lead time16

of 4 months. In the 2000-yr long simulation, the LLE-derived predictability at17

the 4-month lead time varies (multi)decadally only by 9-18%. Active ENSO18
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periods are more predictable than inactive ones, while epochs with regular19

periodicity and moderate magnitude are classified as the most predictable by20

the LLEs. Events with a deeper thermocline in the west Pacific up to five21

years prior to their peak, along with an earlier deepening of the thermocline22

in the east Pacific in the months preceding the peak, are classified as more23

predictable. Also, the GCM is found to be less predictable than nature under24

this measure of predictability.25

Keywords ENSO · Predictability · Local Lyapunov Exponents26

1 Introduction27

The limits of predictability of the state of the tropical Pacific are still not28

known, and the accuracy and range of ENSO predictions in dynamical, sta-29

tistical, or hybrid models have not improved substantially since the first dy-30

namical forecast by Cane et al (1986) (Barnston et al, 1999, 2011). The skill31

of models used at present for operational ENSO forecasting varies with fore-32

cast lead-times (Landsea and Knaff, 2000): depending on the event, models33

have provided skillful short-range (0-3 month lead), medium-range (6-9 month34

lead) and long-range (12-22 month lead) forecasts (e.g. Ruiz et al, 2005; Dros-35

dowsky, 2006; Lima et al, 2009). It has been shown that model skill depends36

on the amplitude of interannual ENSO variability, with active ENSO periods37

tending to be better predicted than weaker ones (Kirtman and Schopf, 1998).38

In addition, skill varies decadally (Chen et al, 2004) with decadal variations39

in tropical Pacific climate, and the limitations in our understanding of Pa-40

cific decadal variability impose limits on the skill of ENSO predictions (see41

Hazeleger et al, 2001; Wittenberg, 2002; Karspeck et al, 2004; Power et al,42

2006; Penland and Matrosova, 2006, and references therein).43

The limits of predictability depend on the mechanisms responsible for ENSO44

irregularity and equilibration at finite amplitude (Sarachik and Cane, 2010).45

The former have been linked to either chaos (Munnich et al, 1991; Jin et al,46

1994; Tziperman et al, 1994; Timmermann and Jin, 2002; Ghil et al, 2008),47

or noise (Wittenberg, 2002; Vecchi et al, 2006; Gebbie et al, 2007; Zavala-48

Garay et al, 2008; Kleeman, 2008). Both depend on the stability -or lack of it-49

of the atmosphere-ocean interactions. It is possible that real ENSO behavior50

emerges from the dialectics of chaos and noise, with each dominating in any51

given decade.52

Decadal variability of ENSO is present in historical and paleoclimate records,53

and has been simulated by a hierarchy of dynamical and statistical models54

(Vecchi and Wittenberg, 2010; Collins et al, 2010; DiNezio et al, 2012; Emile-55

Geay et al, 2013a,b). As discussed in Lin (2007), the representation of the inter-56

decadal variability of ENSO in the Coupled GCMs participating in the IPCC57

AR4 ranges from constant periodicity or amplitude to significant inter-decadal58

variability in both period and amplitude. While long runs of intermediate dy-59

namical models, such as the ZC model (Zebiak and Cane, 1987), that exhibit60

inter-decadal and inter-centennial variability have been a subject of numerous61
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studies, only recently have long runs of coupled GCMs become available. Wit-62

tenberg (2009) discusses the strong inter-decadal and inter-centennial ENSO63

variability in the 2000-yr run of the GFDL CM2.1 coupled GCM with so-64

lar irradiance, land cover and atmospheric composition held constant at 186065

values (Wittenberg et al, 2006). The presence of such rich variability in the66

absence of variations in solar or volcanic forcing that could induce persistent67

regimes (Mann et al, 2005; Emile-Geay et al, 2007; Guilyardi et al, 2009), along68

with the length of the simulation, provides new ground for investigation of the69

causes of long-term modulation of ENSO behavior, and the implications for70

predictability at time-scales from the short-range to the decadal. Wittenberg71

(2009) shows that beyond 10 years the CM2.1 wait times between moderate-to-72

strong warm event peaks are indistinguishable from those of a Poisson process,73

thus indicating that ENSO modulation at inter-decadal and inter-centennial74

time scales need not require multi-decadal memory in the system.75

Here, we address questions surrounding the variability in ENSO predictability76

in the context of dynamical systems theory. First, we briefly discuss concepts77

from the ergodic theory of dynamical systems used in this study, and some78

considerations in applying them to a high-dimensional model (section 2).79

We then calculate estimates of Local Lyapunov Exponents (LLEs) from the80

monthly NINO3 SSTa time series of a 2000-yr long simulation from GFDL’s81

CM2.1 model (Wittenberg et al, 2006; Wittenberg, 2009) as a measure of82

ENSO predictability (section 3). The LLEs are particularly useful in char-83

acterizing predictability locally in the attractor of a system that likely passes84

through phases of increased or decreased predictability. They describe the85

growth of infinitesimal perturbations due to internal variability over a finite86

time, and are a measure of the immediate evolution of predictive uncertainty87

at any given point in the system phase-space. However, practical ENSO fore-88

casting is concerned with the evolution of finite, and not infinitesimal, un-89

certainties. In order to assess the relevance of the LLE-derived estimates of90

predictability to actual predictability, we compare error growth rates calcu-91

lated from the LLEs with that calculated from a set of re-forecast experiments92

initialized from the same 2000-yr long CM2.1 simulation (section 4). We show93

that the relationship between LLE-derived and actual predictability is depen-94

dent on the forecast lead time, and is sensitive to the length of simulation.95

We test a set of hypotheses to explain discrepancies between LLE-derived and96

actual predictability at different lead times, and show that the LLE-derived97

error growth rate is closer to actual growth rate at a lead time of 4-months.98

This study then uses the LLE estimates at a lead time of 4 months as a relative99

measure to study fluctuations in predictability of this kind in the long 2000-yr100

simulation (section 5). We also compare model predictability to predictability101

in nature quantified by the same methods (section 6). We find that the loss of102

information in the GCM is faster than that inferred from observations, more103

so in active periods (post-1960). Finally, we explore the relationship between104

predictability and the evolution of SST and upper-ocean heat content anoma-105

lies (section 7). We show that events with more heat pile-up in the Western106

Pacific five years prior to their peak, and with a deepening of the thermocline107
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three months before the onset of the SST anomalies are more predictable.108

To our knowledge, this is the first attempt to use LLEs to characterize pre-109

dictability based on the output of a comprehensive climate model. Such mea-110

sures have been primarily used within the lower levels of the hierarchy of mod-111

els, and caution is required when one attempts to generalize these methods to112

models of higher complexity. Thus, the present paper serves as an initial as-113

sessment of the applicability of such methods to GCM output. In addition, the114

use of a computationally cheap relative measure of predictability in GCM sim-115

ulations is interesting for intra- and inter-model comparisons: characterizing116

relative predictability in a long climate model experiment could prove use-117

ful for identifying periods of the simulation that warrant further investigation118

of their dominant dynamics. Furthermore, a measure of relative predictabil-119

ity derived from model output can be useful for guiding classical predictability120

studies, e.g. for selecting initial conditions for running re-forecast experiments.121

Lastly, local predictability measures offer the possibility for more detailed com-122

parisons between models and observations compared to global measures, such123

as the global Lyapunov exponents, since the models and the observations are124

required to agree at a large number of values rather than just one estimate of125

general predictability (Abarbanel et al, 1992).126

2 Theory127

2.1 Key concepts128

We offer here a brief discussion of the key concepts of the ergodic theory of129

dynamical systems. The reader is referred to Abarbanel (1995) for details of130

the concepts that follow.131

A commonly used method in studies of dynamical systems is phase-space re-132

construction by time-delaying of a single state variable X (Takens, 1981; Sauer133

et al, 1991). The key concept behind this method is that the time history of134

a single variable may act as a proxy for any of the variables of the system,135

since all variables are connected in a dynamical process. The measurement136

X(t) is a result of the evolution of the dynamical system from X(t − τ) over137

a period τ during which all dynamical variables affect the variable X. Thus,138

the d-dimensional vector {X(t), X(t − τ), X(t − 2τ), ..., X(t − d · τ)} of the139

time delays of X(t) stands as a proxy for observing d variables of the system.140

The dynamical system evolves over time towards subsets of the phase space,141

known as attractors.142

To reconstruct the phase space one needs to determine the appropriate em-143

bedding dimension d and time lag τ .144

The False Nearest Neighbor (FNN) method (Kennel et al, 1992) determines145

the sufficient embedding dimension for unfolding of the attractor in the fol-146

lowing way: A vector x(t) in the d-dimensional phase space has neighboring147

vectors, denoted by xNN (t). If a given xNN (t) is a true neighbor of x(t), then148

it came to the neighborhood of x(t) through the evolution of the system dy-149
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namics. If, on the other hand, xNN (t) is a false neighbor, then it has arrived150

in the neighborhood of x(t) not due to the dynamics, but by projection from151

a higher dimension: The dimension d does not unfold the attractor, and by152

moving to the next dimension d + 1, the said false neighbor will be removed153

from the neighborhood of x(t). Consequently, the sufficient embedding dimen-154

sion to unfold the attractor may be defined as the dimension above which no155

more false neighbors can be found.156

Abarbanel et al (1993) tested the robustness of the FNN method by exam-157

ining the effect of adding noise to a signal from the Lorenz attractor. They158

showed that until a ratio N/R = 0.5, where R is the rms of the signal, and159

noise is uniform in [−N,N ], the FNN technique is able to definitively detect160

low-dimensional signals, and the residual percentage of false neighbors gives161

an indication of the noise level (see their figure 17).162

In order to determine the appropriate time lag for the embedding, it is best to163

use a nonlinear measure, such as the Average Mutual Information (Shannon,164

1948). The Average Mutual Information (AMI) is defined as the information165

contained in X(t+ τ) about X(t) (Moon et al, 1995):166

AMI(X(t);X(t+ τ)) =
∑

X(t),X(t+τ)

P (X(t), X(t+ τ))log
P (X(t), X(t+ τ))

P (X(t))P (X(t+ τ))

(1)167

The lag τ that corresponds to the first minimum of the AMI can be chosen168

as the optimal lag for the embedding. An additional, but linear, criterion is169

the first zero crossing of the autocorrelation function, which is usually at the170

same order of the first minimum of AMI (Abarbanel et al, 1993).171

The rate at which the nearby trajectories separate (diverge) in the phase space172

is described by the Lyapunov exponents, introduced by Oseledec (1968). Lya-173

punov exponents are metric invariants, in that they are insensitive to initial174

conditions or small perturbations of an orbit in the phase space. For a system175

to possess chaos, positive Lyapunov exponents have to exist, and their sum is176

equal to the Kolmogorov-Sinai entropy (Pesin, 1977). In a dynamical system177

with positive entropy h(X), two points that are unresolvable at t = 0 will178

follow after some time τ separate trajectories. The possible number of sepa-179

rable trajectories generated by the system after time τ is measured by 2h(X)τ
180

(Gallager, 1968; Rabinovich, 1978). For τP ≈ h(X)−1, this number approaches181

the total number of trajectories available for the system, so that all knowledge182

of the evolution of a specific orbit is lost; i.e. predictability is lost after time183

τP , although statistical information about the system is retained (Abarbanel184

et al, 1993). The Kolmogorov-Sinai entropy h(X) is approximately equal to the185

largest global Lyapunov exponent λ1(X), therefore τP ≈ λ1(X)−1. This limit186

has been considered as a measure of predictability in the context of weather187

forecasting, in the sense that no new information to the climatology is added188

by the forecast.189

The average prediction error in the system at time t, E(t) grows exponentially190



6 Christina Karamperidou et al.

from the initial error E(0) as follows:191

E(t) = E(0) · eλ1t (2)192

While global Lyapunov exponents characterize the average predictability of the193

attractor, the local behavior of instabilities is also of interest, in particular in194

the neighborhood of stable and unstable manifolds, where predictability varies195

dramatically relative to the global behavior. Such changes in predictability are196

of great interest with regard to the regime like behavior of ENSO since they197

speak to the character of the underlying manifold in state space. Note that the198

evolution of an initial uncertainty need not be uniform even in a uniform linear199

system due to the role of non-orthogonal eigen-bases on uncertainty growth200

(Smith et al, 1999). Local Lyapunov Exponents λ(x, L) measure the growth or201

decay over L time steps of a perturbation made around a specific point x of202

the attractor (Kennel et al, 1994).203

As L → inf, the local LLE estimates tend toward asymptotic values corre-204

sponding to the global exponent, i.e. λ(x, L) → λ. Abarbanel et al (1992)205

argue that the largest average LLE will approach the global exponent from206

above, i.e. that finite-time predictability will, on average, be worse than the207

global Lyapunov exponent indicates. The Local Lyapunov exponents, and thus208

local predictability, may vary significantly on the attractor indicating times of209

enhanced or reduced predictability (Abarbanel et al, 1991; Legras and Ghil,210

1985; Nese, 1989; Nese and Dutton, 1989; Siqueira and Kirtman, 2012).211

In general, the methods used in nonlinear time series analysis are burdened212

by the finite size of the dataset, the presence of stochastic noise, and the frac-213

tal nature of the attractor (Bryant et al, 1990). The sensitivity of the LLE214

estimates to the size of the dataset is discussed in detail in sections 4 and 6,215

where we present results from sub-sampling of the dataset. Here, we treat the216

model output in a perfect-model and noise-free sense, applying no smoothing.217

2.2 Interpretation for ENSO218

We next apply these methods to 2000 years of monthly-mean NINO3 SSTs,219

simulated by the GFDL CM2.1 coupled GCM with its solar irradiance, land220

cover and atmospheric composition held constant at 1860 values (Wittenberg,221

2009). Numerous studies have shown the CM2.1 model to produce a reasonable222

simulation of tropical climate and variability, as one of the best models in the223

CMIP3 intercomparison (Delworth and Coauthors, 2006; Gnanadesikan et al,224

2006; Wittenberg et al, 2006; Capotondi et al, 2006; Kug et al, 2010). The225

model is also highly relevant to ENSO predictions, since it is used routinely at226

GFDL for ocean-atmosphere data assimilation and seasonal-to-decadal fore-227

casts (Zhang et al, 2004, 2005, 2007; Sun et al, 2007; Yang et al, 2013). In228

addition, CM2.1 remains close to the state-of-the-art in climate modeling, as229

the parent of all of the new models developed at GFDL for the CMIP5 in-230

tercomparison (Donner et al, 2011; Griffies et al, 2011; Galbraith et al, 2011;231

Delworth et al, 2012; Dunne et al, 2012, 2013).232
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The GCM is a high-dimensional dynamical system. In principle, at any time233

it has a set of LLEs (i.e the eigenvalues of the linear tangent model at that234

point in phase space) that are a function of the model equations and the sys-235

tem state. These exponents are not calculated directly; rather, they are esti-236

mated from a long time series, which in our case is the model output (monthly237

NINO3 SSTa, upper-ocean heat content etc.) over a restricted domain. Hence,238

the LLEs reflect the dominant dynamics of processes in this restricted domain239

as they evolve in the global domain. In reconstructing the phase-space of the240

model we find that the optimal embedding dimension is d = 5 (see section 3241

for details): therefore, we are reducing the dimensionality of the system from242

O(108) dimensions to five dimensions. Much of this reduction comes from con-243

sidering only the ENSO subsystem in the tropical Pacific. A final reduction to244

five dimensions is consistent with Tziperman et al (1994), who found that the245

Zebiak-Cane model, which has O(108) variables and simulates only the ENSO246

subsystem, could be reduced to a dimension less than 7.247

The LLEs describe the growth of infinitesimal perturbations due to internal248

variability. The local e-folding time of small perturbations in the system is249

shorter when the LLEs are large and the system less predictable. If one in-250

terprets the NINO3-derived LLEs in the context of ENSO being a weakly251

damped oscillator sustained by wind perturbations (e.g. Neelin et al, 1998;252

Kirtman and Schopf, 1998; Thompson and Battisti, 2000, 2001; Fedorov and253

Philander, 2001), then the derived LLEs would describe the capacity of wind254

perturbations, which slightly alter the initial conditions, to grow and thus hin-255

der predictability. As was noted in Fedorov (2002) and Fedorov et al (2003), the256

initial conditions are important for the influence of the westerly wind bursts:257

during the initiation of a warm event a westerly wind burst can accelerate the258

development of the event, while one after the peak of El Niño will simply pro-259

long its duration. Therefore, it could be reasonable to treat them as possible260

slight perturbations of the monthly NINO3 index, on which our LLE calcula-261

tions are performed. Note that these wind perturbations need not be external262

to the system (Eisenman et al, 2005; Vecchi et al, 2006; Tziperman and Yu,263

2007; Gebbie et al, 2007). In any case, whether these perturbations be external264

weather noise, or modulated by the ENSO state, the SST-derived LLEs that265

we examine here could describe the initial rate of error growth following such266

perturbations, as long as the main assumption of the embedding theorem, that267

the single variable, NINO3 SST, is sufficient to reflect underlying system vari-268

ables, holds. It is our expectation that this is true for modes that grow to be269

the substantial errors that matter for ENSO forecasting, though it is unlikely270

to be true for all the fast-growing but short-lived perturbations that the GCM271

allows (as for example in Lengaigne et al, 2004).272

3 Reconstruction of the phase space273

Figure 1 shows the NINO3 SST anomalies in the 2000-yr GFDL CM2.1 pre-274

industrial simulation. Color coding indicates terciles of predictability as in-275
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ferred by the LLEs: green periods have small LLEs and are the most pre-276

dictable, orange periods are of intermediate predictability, and red periods are277

the least predictable. These terciles of predictability will be discussed in detail278

in section 5 of the paper.279

Applying the False Nearest Neighbor (FNN) method described by Kennel et al280

(1992) to the unsmoothed monthly time series of NINO3 SSTa, we estimate281

the optimal global embedding dimension as d = 5. Both the Average Mu-282

tual Information and the autocorrelation function, suggest a time lag τ of283

11 months for the embedding. Consequently, the 5-dimensional reconstructed284

phase space spans 5̃ years (55 months). To avoid the influence of seasonality285

in our analyses, we exclude points within 12 months of a target point in the286

search for nearest neighbors. We thus avoid considering sequentially-adjacent,287

serially-correlated vectors as neighbors.288

At each point of the reconstructed phase-space, six nearest neighbors are289

found, and the average rate of divergence in the phase space of their tra-290

jectories from the reference trajectory over a window of length L is calculated,291

where L is the time scale of integration (hereafter referred to as lead time292

L). The LLEs are approximated via the local Jacobian matrix derived from a293

Taylor expansion in the small deviations from the center of the neighborhood.294

Thus, the local Lyapunov spectrum consists of one exponent for each local di-295

mension and for each lead time L. The local dimension must be equal to or less296

than the global dimension (d = 5). While we have chosen the local dimension297

to be three, we have also computed the LLEs with local dimension equal to298

the global dimension d = 5 and the results are not substantially different. The299

number of neighbors found for each reference point in the embedding is chosen300

to be twice the order of the polynomial fit used to form the local Jacobians301

(equal to 3) for numerical stability. The average distance in the 5-D phase302

space of the closest nearest neighbor from the reference point is 0.75 ◦C, while303

the average difference in NINO3 SSTa between the closest neighbor and the304

reference point is 0.15 ◦C.305

Figure 2 shows an example of events and their nearest neighbors at a lead306

time L = 4 months. In figure 2a, we show the NINO3 SSTa of the nearest307

neighbors found in phase-space for the event of year 1722 (in thick black line).308

Since the lead time we use is L=4 months, the neighbors are identified by their309

proximity in the reconstructed-phase space 4 months before the peak of the310

event, i.e. by the proximity to the reference point NINO3(t−L, t−L+ τ, t−311

L+ 2τ, t−L+ 3τ, t−L+ 4τ, t−L+ 5τ), where t is peak month, L is the lead312

time, and τ is the embedding lag (11 months). This proximity is also reflected313

in the actual timeline as seen in the figure (note the convergence of trajectories314

at months -4,7,18). As mentioned above, in the search for nearest neighbors315

we exclude points in the phase space that are within 12 months from the ref-316

erence point; thus, we avoid selecting the same -but slightly lagged- event as a317

neighbor of the reference event. The LLE at the peak of the event character-318

izes, within the reconstructed phase-space, the divergence of the trajectories of319

the neighbors from their reference trajectory in the 4-month window prior its320

peak. In this case, the LLE is small, i.e. the event is within our ’green tercile’321
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of more-predictable events (see section 5). The trajectories in phase-space do322

not diverge very fast in this 4-month window, which is reflected in the actual323

timeline as well. In contrast, figure 2b shows the evolution of the NINO3 SSTa324

for the nearest neighbors of the event of year 1733, which is characterized by325

its LLE as a lower predictability event (it belongs to our ’red tercile’). In the326

four months prior to the peak, the divergence of trajectories in the phase-space327

is higher, as is also reflected in the evolution of NINO3 SSTa in time.328

For the main analyses presented in sections 5, 6, and 7 we chose a lead time329

of L = 4 months. It appears to be a generic property of dynamical systems,330

including low dimensional examples such as the Lorenz equations or the Ikeda331

map, to have rapid initial growth in the rate of divergence (i.e. the size of the332

LLE), which then slows with time and ultimately approaches an asymptotic333

limit set by the size of the entire attractor (e.g. Kennel et al, 1994). Very334

short lead times L put us in the rapid growth regime so the LLE(x, L) over-335

estimates the dispersion growth rate relevant to predictability. At long lead336

times the exponential assumption (equation 2) made in defining the LLE no337

longer holds, and the estimation procedure is no longer valid. Hence we choose338

an intermediate lead time L =4 months. This choice was also supported by339

the comparison between the LLE-derived error growth rates and those derived340

from a set of re-forecast experiments using CM2.1 (section 4).341

4 LLEs and actual predictability342

In this section we explore the relationship of the LLEs calculated via recon-343

struction of the phase-space by time-delaying of the monthly NINO3 SSTa344

with the predictability estimates from a series of re-forecasts experiments per-345

formed with CM2.1.346

The CM2.1 reforecast experiments are described in detail in Wittenberg, in347

prep. Briefly, 11 different 1-January initial conditions were selected from the348

CM2.1 control run, each at least a decade apart and sampling epochs with a349

diverse range of ENSO amplitudes and ENSO regularity/irregularity. For each350

initial condition, the model trajectory is perturbed by adding an effectively351

infinitesimal (order of 10−4 ◦ C) increment to the ocean surface temperature352

at a single gridpoint in the central equatorial Pacific. Forty such perturbations353

are made for each initial condition. These forty ensemble members are then354

integrated forward in time for 10 years, using the same CM2.1 model that gen-355

erated the control run itself. The ensemble root-mean-square (RMS) difference356

of the monthly-mean NINO3-averaged SST from the ensemble mean is then357

computed at each reforecast lead time, as a measure of the ensemble spread.358

Denoting this RMS difference by D(t), we then compute the ratio D(t)/D(0)359

as a measure of the dispersion rate of the ensemble, where t=0 corresponds to360

the central (16-January) time of the first monthly-mean.361

To compute the e-folding time, we consider an exponential growth model,362

where:363

D(t) = D(0) · e
t
τe (3)364
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where D(t) is RMS ensemble spread at time t, and τe is the e-folding time.365

It follows that the error-growth rate, or Re-forecast LLE Equivalent (RLE) at366

lead time t is:367

RLE(t) =
1

τe
=
lnD(t)
D(0)

t
(4)368

Figure 3a shows boxplots of LLEs vs. lead time; as the lead time increases, the369

LLE estimates, and therefore the error-growth rate, decreases. Saturation oc-370

curs after approximately 64 months. At that time, the local exponents asymp-371

totically approach the global estimate. Figure 3b shows the RLEs, defined as372

in equation 4; as the ensemble disperses, the growth rate slows. Saturation in373

the re-forecasts occurs at approximately 64 months also. At short lead times374

the spread among experiments is large.375

Figure 4a presents the LLE-derived growth rate (LLE) vs. the one calculated376

from the 11 re-forecast experiments (RLE). Colors indicate the forecast lead377

time, or scale of LLE integration, and the gray line denotes a one-to-one re-378

lationship. Over short lead times, i.e. four months and less, the LLEs under-379

estimate the error growth rates, i.e. overestimate the e-folding time τe. On380

the contrary, over longer lead times, the LLEs overestimate the true rates, i.e.381

underestimate τe. Interestingly, the relationship between LLEs and RLEs is a382

linear function across lead times:383

LLE(t) = 0.56 + 0.25 ·RLE(t) (5)384

4.1 Short lead times385

One possible explanation for the underestimation of error dispersion over short386

lead times is that the LLE estimation is based on neighbors in the phase space387

that are farther apart than in the case of the re-forecasts, where the initial388

perturbation is truly infinitesimal. The exponential growth model for errors is389

only a linear tangent approximation, and if the initial separation is large this390

approximation is compromised by the difference-based derivative approxima-391

tions. This hypothesis would imply that, given a long-enough CM2.1 simula-392

tion, the neighbors based on which the LLE approximation is done would be393

closer because they are drawn from a larger sample. Hence the approximation394

to true LLEs would be better. Indeed, when the LLE calculation is performed395

on half the time series, for short lead times the approximation is worse, as seen396

in the diamond-shaped points in figure 4.397

To further test this hypothesis, we consider the average difference in NINO3398

SSTa between the closest neighbor and the reference point, which was found399

to be 0.15 ◦C (see section 3). Figure 5 (left panel) shows the growth of the400

re-forecast spread versus lead time in the first 10 months of the re-forecast.401

As was also seen in figure 3, the growth rate slows as the ensemble disperses.402

The 0.15 ◦C RMS of the nearest-neighbor distance is analogous to the spread403

of the second monthly-mean of the reforecasts, as shown by the red line in404

figure 5. The subsequent growth rate for this spread, evaluated via a forward405
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difference between the second and third-month mean, is approximately one406

e-folding per month, as seen in the right panel of figure 5.407

In order to test whether the initial distance of the nearest neighbors is the408

culprit for the discrepancy between LLE estimates and RLEs, we replace in409

equation 4 the RMS spread of the first monthly-mean D(0) with that of the410

second monthly-mean, D(1). Figure 4b shows the LLEs vs RLE for the second411

monthly-mean growth rate. The LLEs now overestimate the second monthly-412

mean growth rate at all lead times. This could be expected, since the new413

estimate of actual error growth is aligned in the direction of the modes that414

grow fastest between t = 0 and t = 1 (and were originally underestimated by415

the LLEs). These modes do not grow as fast from t = 1 to the next time steps416

as the ones that grew from random seeds at t = 0. But, the LLE estimate still417

assumes a random seed, so it should now be larger than the RLE of the second418

montly-mean spread.419

The relation between LLEs and the RLEs of the second montly-mean spread420

is now:421

LLE(t) = 0.53 + 0.75RLE(t) (6)422

In conclusion, the underestimation of error-growth by the LLEs for short lead423

times is attributed to the fact that in a finite time series the nearest neigh-424

bors based on which the error-growth is calculated are not close enough for425

the approximation to capture the more rapid initial growth characteristic of426

dynamical systems.427

4.2 Long lead times428

If the nearest-neighbor growth rate of approximately ’one e-folding per month’429

were to continue, the spread would saturate at the climatological value in just430

over three months (green line in figure 5). But for the actual re-forecasts, this431

growth rate is not sustained, and it takes more than seven months to first432

reach that climatological level. As the scale increases, the actual growth rate433

slows down (also see fig 3b); the RLE and the LLE-approximated growth rates434

approach each other at lead time L = 4, as seen in figure 4a. For lead times435

over 8 months, the LLEs greatly overestimate error growth. This could be a436

consequence of the saturation of error growth near the size of the attractor437

(Kennel et al, 1994; Boffetta et al, 1998), and of the assumption that error438

growth is exponential until a finite limit (i.e. the global LE). It is clear, how-439

ever, that exponential growth of errors does not hold for long lead times, and440

that finite-size perturbations and prediction errors cannot grow indefinitely. If441

the actual error has stopped growing and the LLE still assumes exponential442

growth, then the discrepancy in growth rates will increase linearly with lead443

time L, as found in figure 4a.444

To constrain error growth at long lead times, Kennel et al (1994) introduce445

a limiting factor ρ = lnR, where R is the ratio of the geometric mean over446

uncorrelated pairs of attractor points to the geometric mean of the initial447

perturbation magnitude. To introduce an analogous correction, we consider448
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the limiting factor to be the ratio of the final RMS (standard deviation of449

NINO3 for the 2000-yr simulation, i.e. 1.25 ◦C) to the initial RMS, i.e. the450

initial distance of the neighbors (0.15 ◦C). We constrain the LLE estimate as451

follows:452

LLE′(x, L) = min
(
LLE(x, L),

ρ

L

)
, where ρ = ln

(
sd(NINO3)

D(0)

)
(7)453

Figure 4c shows the LLE vs. RLEs after the correction of equation 7. The es-454

timates are now very close to the one-to-one line, especially at long lead times.455

Note that this correction has no effect at short lead times. Figure 4d shows456

the same LLE’s as figure 4c, but as in figure 4b the re-forecast equivalents are457

calculated using the second monthly-mean spread as an initial value.458

To conclude, error growth is characterized by an initial rapid growth, followed459

by a regime of exponential growth, leading to a saturation for long lead times.460

The LLE estimates computed here cannot capture the initial rapid growth461

possibly because they are approximated based on an initial distance of neigh-462

bors that is much larger than infinitesimal and is analogous to the spread463

of the second monthly-mean of actual re-forecasts. For the longer lead time464

of 4 months, where the exponential error growth is more relevant, the LLE465

estimate and actual growth rate are very close to each other. For lead times466

beyond 8 months, the LLEs greatly overestimate the error growth, since they467

cannot distinguish between the fast modes and the slow modes that extent468

predictability beyond these lead times (e.g. as in Goswami and Shukla, 1991;469

Blumenthal, 1991; Goswami et al, 1991).470

For the remainder of the paper, we choose to focus on LLEs at the intermediate471

scale of 4 months.472

5 Variability in predictability in the GFDL CM2.1-1860 simulation473

At a lead time of L = 4 months, we calculate two positive and one negative474

LLE with [mean, standard deviation] equal to [0.77, 0.068],[0.233, 0.068], and475

[−0.728, 0.109]. To test whether the calculated LLEs as significantly different476

from the ones calculated from an AR(2) process, we fitted an AR(2) model to477

the 2000-yr time series, generated samples from this process, and calculated478

their LLEs. A Kolmogorov-Smirnov test confirms that the LLEs calculated479

from CM2.1 could not have come from such an autoregressive process at the480

.05 significance level.481

In order to quantify variability in predictability over the long simulation, we482

define terciles of predictability based on the 33rd and 67th percentile of the483

largest positive LLE. The mean and standard deviation of the LLEs for each484

level is equal to [0.85, 0.048], [0.77, 0.015] and [0.70, 0.032], respectively. On485

average, predictability increases by approximately 9% from one tercile to the486

next lower one.487

The variations in predictability in the 2000-yr run are shown in figure 1. Red488
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color (first tercile) indicates periods with the least predictability; orange peri-489

ods (second tercile) are intermediate, and green periods (third tercile) are in490

the most predictable tercile. The difference in predictability between the most491

(green) and least (red) periods is approximately 18%.492

Wittenberg (2009) noted distinct periods of ENSO behavior, shown in the493

shaded regions in figure 1. Some of these epochs correspond to distinct periods494

of ENSO predictability. Epoch M1, whose ENSO variability mimics pre-1960495

observations is marked by decadal variations in predictability. The decades496

with stronger variability and persistence of events, such as years 330-350 be-497

long to the first tercile (red), indicating decreased predictability. Epoch M6498

agrees well with the post-1960 observed variability, characterized by weak, bi-499

ennial oscillations, followed by a large warm event, then several smaller events,500

another large warm event, and then a long quiet period. This irregularity seems501

reflected in predictability, as shown in figure 1.502

On the other hand, epoch M2 with moderate ENSO events which exhibit regu-503

lar periodicity, is marked as a period with constantly enhanced predictability.504

Epoch M3, a period of consistently strong variability, has long periods of en-505

hanced predictability. The quiet epoch M5 is characterized by more La Niña506

events; in this epoch, predictability is decreased, as indicated by the promi-507

nence of red periods. Epoch M7 with strong warm events is also classified as508

less predictable by the LLEs, while the irregularity of ENSO in epoch M6 is509

accompanied by irregularity in predictability.510

Is there correspondence between the decadal variability in ENSO magnitude511

and frequency and the decadal variability in ENSO predictability? Figure 6512

shows scatterplots of NINO3 standard deviation, period and mean e-folding513

time for epochs M1 to M7, and for consecutive 50-yr periods (open circles).514

The mean period for each 50-yr period is defined from the peak of the wavelet515

power spectrum. In this model, higher variance is associated with larger pe-516

riod, i.e. the stronger the events the longer it takes for the Pacific to ’recharge’517

to give another event so the longer the wait-time between events (figure 6a).518

The relationships of the e-folding time with period and standard deviation are519

not statistically significant (see best linear fit line in figures 6b and c). Only520

if one excludes the consecutive 50-yr periods and the mega-ENSO period M7521

is there a correlation of e-folding time with period and standard deviation522

(see gray best linear fit lines for M1-M6 in figure 6). Note that the ’inactive’523

period M4 has shorter e-folding time than the ’active’ period M3; the latter is524

characterized by longer periodicity and higher variance. Epoch M2, which is525

the most predictable has the longer period and highest variance.526

Is there is a relationship between the magnitude of individual events and their527

classification in terms of predictability? There seems to be no such relationship528

over the whole 2000-yr run. However, such relationships arise when one looks529

within the epochs whose spectral characteristics resemble observed ENSO pe-530

riods. Figure 7 shows the probability density function that an event of certain531

magnitude be associated with each of the three levels of predictability. In532

epoch M1, which mimics the pre-1960 observed record, strong warm events533

are deemed less predictable, in contrast to strong cold events (figure 7a). For534
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example, strong warm events of magnitude 2.5 ◦C have a 63% probability of535

being less predictable (level 1). Strong cold events of magnitude -2 have 40%536

probability of belonging to level 1, and 60% probability of belonging to one537

of the other two categories of enhanced predictability. The picture is quite538

different during active epoch M6, which agrees with the post-1960 observed539

ENSO variability, as seen in figure 7b. This epoch has stronger warm ENSO540

events (note the abscissa). The majority of the 2.5 ◦C events here are deemed541

more predictable (levels 2 and 3). This result suggests that caution should be542

exercised when one infers relationships between predictability and magnitude543

of ENSO events based on the short record: conclusions are epoch-dependent,544

and no such relationships would be inferred from our examination of the full545

2000-yr long simulation.546

Finally, we compare one active and one inactive period. During active epoch547

M3 very strong warm events are more predictable in contrast to strong cold548

events (figure 7c). During the inactive period M4 strong warm events are less549

predictable, and, on average, the whole inactive period M4 is less predictable550

than the active period M3 (compare figures 7c and 7d). The same conclusion551

can be drawn from figure 6. This result is consistent with the finding of Kirt-552

man and Schopf (1998) that forecast skill is higher in periods of high amplitude553

interannual variability.554

6 Predictability in CM2.1 vs. observations555

In this section, we compare the LLE characteristics in epochs M1 and M6 to556

the LLEs computed from the observed record.557

We compute the LLEs at lead time L = 4 months from the NOAA Extended558

Reconstructed SST ERSST.v3 record; figure 8 shows the NINO3 time series,559

with colors indicating terciles of predictability, as in previous sections. The560

shaded regions R1’ and R2’ are the two periods discussed in Wittenberg (2009),561

corresponding qualitatively to model epochs M1 and M6, respectively.562

Figure 9 shows the probability density function of the e-folding time for a)563

epoch M1 and its corresponding period 1900-1960 in the observed record, and564

b) epoch M6 and its corresponding period 1961-2000. Note that for a consistent565

comparison with the 100-yr long observational record, the LLEs are computed566

here using 100-year periods (M1 and the period 1501-1600 containing epoch567

M6). The gray dashed line shows the probability density function estimated568

for the full 2000-yr long run, while the gray solid line shows the pdf estimated569

from the 100-yr long observational record. The green dotted line delineates570

the pdf of the e-folding time computed from randomly selected 100-yr long571

periods from an unforced 150,000-yr long simulation from the Zebiak-Cane572

(ZC) model Zebiak and Cane (1987).573

In general, the mean e-folding time in the model is smaller than in the ob-574

served record, indicating that the rate of information loss in the model is faster575

than in nature. The median e-folding time for epochs M1 and M6 is 1.67 and576

1.61 months, respectively, compared to 2.3 and 2.1 months in the pre- and577
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post-1960 observed periods. The lower variance in the model pdf, especially in578

epoch M6, indicates less variability in predictability compared to observations.579

The model also has on average less predictability in the more active epoch M6580

(figure 9b). The probability mass of the e-folding time from observations is581

shifted to lower values in the active post-1960 period (the median value shifts582

from 2.3 to 2.1), and median predictability is reduced by 8.5%. However, the583

tails of the distribution are heavier and extend up to 4 months in the active584

1961-2000 period. In CM2.1, the shift in median values is of the order of 4%.585

The e-folding time in the ZC model is similar to that of CM2.1 (with median586

value 1.7), but has larger variance and heavier tails in better accordance with587

the observed record.588

It could be argued from figure 9 that real-world predictability is an upper589

bound for model predictability, since the probability mass of the e-folding590

time from observations lies above that of the model. In an informal poll we591

found that most people expected nature to be less predictable than any model,592

contrary to our finding here. Some reflection may persuade the reader that593

there is no necessary ordering. For example, the pdf of e-folding time for the594

ZC model has heavier tails, so its predictability could rank higher or lower595

than CM2.1 and observations, depending on the region of the attractor (or596

the time of initialization of a re-forecast). In addition, changing a parame-597

ter (e.g. to increase the strength of ocean-atmosphere coupling and introduce598

more noise in the model) could make it less predictable and could results in599

its pdf being more similar to that of CM2.1. Our findings are consistent with600

the results of Schneider et al (2003), who found that tropical SST anomalies601

in coupled models tend to be less persistent than in observations, and argued602

that initial shocks in the coupled models can be transmitted rapidly to remote603

locations by oceanic wave propagation and lead to degradation of the forecasts604

through coupled interactions. Finally, the discrepancy between between real-605

world and GCM predictability could be arising from the external radiative606

forcings present in the historical reconstruction, which could lend apparent607

predictability to the record.608

The reduction in variance between the 2000-yr sample and the 100-yr sample,609

seen in figure 9, gives a sense of the uncertainty due to sampling when consid-610

ering only a short record period or model run. This suggests that phase-space611

reconstruction based on only a century of data may not suffice to capture the612

system’s dynamics; this concern is similar to the concern of Wittenberg (2009)613

about whether the available ENSO record suffices to constrain ENSO simu-614

lations. As we showed in section 4, the finite nature of the time series used615

for the LLE estimation has an important effect on the accuracy of the derived616

error growth rates, especially at short lead times.617
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7 Relationship of NINO3 predictability and underlying ENSO618

variables.619

As explained in section 2, the fundamental idea of phase space reconstruction620

by time-delay embedding of a single variable is that the delay coordinates621

constituting the embedding contain information about state variables that are622

not explicitly sampled, and are thus able to capture the dynamics of the un-623

derlying high-dimensional system. The LLEs measure the rate of divergence of624

nearby trajectories in this reconstructed phase space. Typically, the number of625

delay coordinates needed is less than or equal to 2d+ 1, where d is the ”true”626

dimension of the underlying phase space if all relevant variables were sampled627

and available to form the phase space. It is of interest, then, to examine the628

capacity of the phase-space reconstruction based solely on the NINO3 Index629

to capture underlying ENSO dynamics.630

Subsequent analyses are based on the phase space reconstruction from the631

first 500 years of simulations, the period for which we had access to upper-632

ocean heat content data. We composite the 120-month Hovmöller diagrams633

of SST and upper-ocean heat content anomalies (0-300m, 10◦S-10◦N) for the634

warm events classified as more (green) and less (red) predictable. An event635

is considered when the NINO3 SSTa exceeds 1◦C, and the classification in636

green and red terciles is based on the LLE estimates at lead time 4 months637

(shown in figure 1). Figure 10 shows the difference of the composite diagrams638

(green minus red). Stippled areas denote statistical significance at the 95%639

level based on bootstrapping. The SST difference plot is also field-significant640

at the 75% level, while the heat-content difference plot is field-significant at641

the 97% level1. The most notable difference is the heat pile-up in the west642

Pacific five years prior to the event, and the associated cold anomalies in the643

east Pacific. The least predictable events are stronger, which accounts for the644

larger SST anomalies in the central Pacific at the peak of the event (t=0), so645

a claim cannot be made on the basis of these results that central Pacific El646

Niños are more predictable. Also, the predictability classification is done here647

on the basis of the NINO3 Index; Kim et al (2009) show that the NINO4 Index648

is more predictable than the NINO3 Index and conclude that central Pacific649

El Niños are more predictable than eastern Pacific ones.650

Figure 11 shows the SST and thermocline depth anomaly within 48 months of651

the peak of the events. Light green and red lines show individual events, while652

thick lines are their composite. While the onset of the SST anomalies is almost653

simultaneous for both groups, the thermocline starts deepening approximately654

four months earlier in the most predictable events. Thus, the LLEs seem to be655

reflecting a reduced uncertainty regarding the onset of an event given a ther-656

mocline that starts depending early on. The difference in thermocline between657

1 In order to test field-significance we used bootstrapping to create 1000 pseudo-difference
maps; these maps exhibit contiguous areas of significant differences, due to spatio-temporal
correlations between gridpoints. The percentage of grid-points that has significant values in
the original map is at the 75th and 97th percentile of the percentage in the 1000 pseudo-
difference maps for SST and heat content, respectively.
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the most and least predictable events might also be reflecting a succession658

of wind events, that could alter subsequent predictability. The amplitude of659

the earlier thermocline anomaly in the most predictable events -almost five660

meters- can be captured by satellites. The results hint towards the notion that661

the thermocline depth contains more information than the SST anomaly, i.e.662

that the slower variable of the system has more predictability than the faster663

one (also see Lima et al, 2009).664

8 Summary and Discussion665

The presence of rich ENSO variability in the long unforced simulation of666

GFDL’s CM2.1 motivated the use of tools from the ergodic theory of dy-667

namical systems to study variability in ENSO predictability, and its possible668

connections to ENSO magnitude, frequency, and physical evolution at the669

epochal and individual-event levels. To that end, this paper uses Local Lya-670

punov Exponents computed from time-delaying of the monthly NINO3 SSTa671

model output. The Local Lyapunov Exponents computed here describe the672

growth of perturbations due to internal variability; as such they are a measure673

of the predictive uncertainty at any given point along the system trajectory.674

We first studied the relevance of LLE-derived local predictability estimates to675

predictability estimates derived from a set of re-forecast experiments. To the676

authors’ knowledge this paper is the first to discuss such relationships using677

long simulations and an extensive set of re-forecasts from a fully coupled GCM.678

The comparison of LLE-derived predictability to error growth from the set of679

re-forecast experiments yielded the following main results:680

1. The LLEs underestimate the error growth rates for short forecast lead times681

(less than 8 months), while they overestimate it for longer lead times.682

2. The underestimation of error growth at short lead times is attributed to683

the fact that in a finite time series the nearest neighbors in the phase space,684

based on which the error-growth is calculated, are not close enough for the685

approximation to be optimal.686

3. Longer model simulations would provide a larger sample from which to687

find nearest neighbors. A better set of nearest neighbors should reduce the688

departure of LLE-derived predictability from ’actual predictability’ (e.g.689

as derived from re-forecasts).690

4. The overestimation of error-growth at long lead times is attributed to the691

fact that finite sized perturbations cannot grow exponentially and indefi-692

nitely. Adding a threshold for error growth brings the LLE-derived estimate693

closer to the actual error growth rates.694

5. The departure of LLE-derived error growth rates (proportional to 1/τe)695

from the actual re-forecast rates is a linear function of forecast lead time.696

6. The growth-rate saturation derived from LLEs occurs at approximately 5697

years, which is broadly consistent with the re-forecast results.698

As shown above, the relationship between LLE-derived predictability and ’ac-699

tual predictability’ as inferred from the re-forecast experiments is lead-time700
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dependent, and sensitive to the length of simulation. Measures like finite-size701

(Boffetta et al, 1998) or scale-dependent (Gao et al, 2007) Lyapunov expo-702

nents could be better suited to characterize the multi-scale nature of ENSO703

predictability. Nevertheless, our study of the relationship between LLE esti-704

mates and predictability from re-forecast experiments in a high-complexity705

GCM contributes to the investigation whether exponential growth of errors706

(as in equation 2) is relevant for quantifying error scaling at both small and707

substantially larger levels of error in these systems (see Kennel et al, 1994;708

Boffetta et al, 1998; Smith et al, 1999, for discussion of these issues).709

We found good agreement between the LLE-derived and the actual error710

growth at lead times near 4 months. This is beyond the lead times dominated711

by initial rapid error growth and before the exponential growth assumption712

underlying the LLE construct becomes inapplicable. Thus, in the remainder713

of the paper, we focused on the 4-month LLEs to characterize periods of in-714

creased or decreased seasonal predictability in the long CM2.1 simulation.715

Our main findings can be summarized as follows:716

1. Predictability as measured by Local Lyapunov Exponents varies (multi)decadally717

by 9-18%.718

2. ’Active’ ENSO periods are slightly more predictable than ’inactive’ ones.719

Also, epochs with regular periodicity and moderate ENSO magnitude are720

classified as the most predictable by the Local Lyapunov Exponents.721

3. The e-folding time is linearly related to ENSO frequency and standard722

deviation during epochs of distinct ENSO variability. However, the linear723

relationship between predictability and standard deviation does not hold724

for all 50-yr periods of the simulation.725

4. The ERSST.v3 dataset appears to lose information less rapidly than the726

unforced CM2.1 GCM. This could be revealing a discrepancy between real-727

world and GCM predictability: The GCM could be more ’chaotic’ than the728

real world, due to an overactive thermocline feedback, and deficient damp-729

ing from evaporation and cloud-shading, likely related to an equatorial730

cold tongue bias. Or, the noise level, associated with atmospheric weather,731

could be higher in the GCM than in nature. Finally, this discrepancy may732

arise from and external radiative forcings present in the historical recon-733

struction.734

5. Events with more west Pacific heat pile-up five years prior to the El Niño735

events are found to be slightly more predictable. Also, the thermocline736

starts deepening approximately four months earlier than the onset of the737

SST anomalies in the most predictable events.738

The variation in predictability reported here is not large (9-18%). It is possible739

then that changes in atmospheric noise (in the tropics or in the extratropics)740

at decadal time-scales could produce such (multi)decadal variations in ENSO741

short-term predictability. Changes in the coupling strength between the ocean742

and the atmosphere could also produce these variations. Preliminary results743

using the methods employed here suggest that the stochasticity of winds play744

a role in determining predictability variations. Further investigation using the745
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intermediate ZC model, and using measures of noise and ENSO stability in746

the GCM simulation might provide some explanation for the variability in747

predictability that is measured here by the LLEs.748

Our investigation also answered the following questions:749

1. Are century-long data sufficient to draw conclusions in terms of variability750

in ENSO predictability? In a related context, are century-long simulations751

or observations sufficient to capture key aspects of the ENSO dynamics?752

2. Is the NINO3 SSTa variable sufficient to capture underlying ENSO dynam-753

ics?754

With regard to the first question, we have shown that the relationship between755

predictability and ENSO variance and magnitude varies with epoch. It is not756

obvious that such a relationship exists when one studies the full 2000-yr sim-757

ulation. This result suggests that caution be exercised when interpreting the758

ENSO predictability-magnitude relationships based on limited records. More-759

over, the reduction in the variance of the Local Lyapunov Exponents computed760

from the 100-yr versus the 2000-yr sample gives a sense of the uncertainty of761

predictability estimates due to sampling, and suggests that long model simu-762

lations are useful for putting the predictability inferred from the 100-yr long763

record into perspective.764

The second question was approached by assessing the capacity of the recon-765

structed phase-space of the NINO3 Index to reflect underlying ENSO dynam-766

ics. It was shown that the classification in terms of predictability on the basis767

of this phase-space reconstruction is in reasonable agreement with expecta-768

tions from our physical understanding of the ENSO system. Heat-pile up in769

the west Pacific five years before the event, as well as a deepening of the770

thermocline three months earlier than the onset of the SST anomalies, are771

precursors of strong El Niño events. It seems that the tools we have used here772

provide a usable reflection of some dynamical system characteristics related773

to predictability, the limitations of the Takens embedding theorem and the774

use of a single state variable to represent a complex system notwithstanding.775

However, further analysis is required to ascertain these initial conclusions. Sec-776

ond, the heat content anomaly (or the thermocline depth anomaly) may be a777

better variable for phase-space reconstruction than the NINO3 Index, which778

is contaminated by weather noise. Therefore, the real issue here is associated779

with the predictability gain in a ’slow’ versus a ’fast’ variable, and with the780

predictability gain associated with spatial and temporal averaging.781

The present paper is an early assessment of the applicability to GCM output782

of methods from dynamical systems theory that use observed data. The use783

of a computationally cheap relative measure of predictability in GCM simu-784

lations is of interest for intra- and inter-model comparisons. Characterizing785

relative predictability in a long climate model experiment could prove useful786

for identifying periods of the simulation that warrant further investigation of787

their dominant dynamics, or for guiding classical predictability studies, e.g.788

for selecting initial conditions for running re-forecast experiments.789
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Fig. 1 The NINO3 Index times series in the 2000-yr unforced simulation of GFDL’s CM2.1.
Colors indicate terciles of predictability, as determined by the LLEs at lead time L=4
months, with red being the least predictable tercile, orange intermediate, and green the
most predictable. Predictability decreases by about 9% on average from tercile to tercile.
The shaded regions indicate epochs of distinct ENSO variability, as per Wittenberg (2009).
The lack of LLE data at the end of the time series, is due to the integration for the calculation
of LLEs being done forward in time.
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Fig. 2 a) An event characterized as more predictable (green in figure 1, year 1722) and its
nearest neighbors. b) A least predictable event (red, year 1733) and its nearest neighbors.
The nearest neighbors are found based on their distance from the reference event in the
phase space, four months before its peak (see section 3).
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lead time 

lead time 

Fig. 3 a) Boxplots of a) LLEs vs. lead time; saturation occurs after 64 months. b) Re-
forecast LLE equivalents (RLEs) vs. lead time, calculated from 11 re-forecast experiments.
The RLEs are defined by equation 4.
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Fig. 4 LLE- vs. RLE-derived growth rate 1/τe a) before any correction, b) after correcting
for the initial distance of nearest neighbors (section 4.1), c) after introducing a threshold
for error growth at long lead times (section 4.2), and d) after both corrections b and c
are applied. Colors indicate the forecast lead time, and the gray line denotes a one-to-one
relationship. The blue line is the best fit from a linear regression model (the equation is
shown). Diamond-shaped points denote the average values for calculations performed on
the first half and second half of the time series.
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Fig. 5 Growth of the monthly-mean re-forecast spread vs. lead time for the first 10 months
in 11 re-forecast experiments (left panel). The right panel shares the same ordinate but shows
the growth rate on the abscissa, which is calculated via a forward difference between month
t and month t + 1. The red line indicates the logarithm of the initial distance of nearest
neighbors for the LLE calculation (0.15 ◦C). The green line shows the climatological spread
of randomly selected NINO3 SSTa monthly means ( 1.5◦C).
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e
e

Fig. 6 Scatterplots of ENSO standard deviation (in degrees C), period (in years), and the
e-folding time (in months) for each epoch of distinct ENSO behavior. Open circles indicate
consecutive 50-yr periods. The shaded area indicates the 95% confidence intervals for the
linear regression fit. The relationship is statistically significant at the 5% level only for
standard deviation vs. period (subfigure a). gray lines indicate the best linear regression fit
for epochs M1-M6. The e-folding time is calculated from LLEs at L=4 months.
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Fig. 7 The probability that an event of certain magnitude be associated with a certain
tercile of predictability, in epoch a) M1, which mimics the pre-1960 observations, b) M6,
which agrees well with the post-1960 observations, c) ’active’ period M3, and d) ’inactive’
period M4. To show the number of events that belong to each tercile, the bottom panel
of each subfigure shows stacked histograms of the events. Strong El Niño events are more
predictable in epoch M6. El Niño predictability is enhanced during the ’active’ period M3
compared to the ’inactive’ one (M4). Terciles of predictability are based on LLEs at L=4
months, as in figure 1.
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Fig. 8 The NINO3 Index from the ERSST.v3 dataset. Colors indicate terciles of predictabil-
ity based on LLEs at L=4 months, with red being the least predictable, orange the imme-
diately more predictable (by 27%), and green the most predictable (by 44% compared to
red). The shaded regions approximate epochs R1 and R2 (pre- and post-1960, respectively),
as per Wittenberg (2009).
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e e

Fig. 9 The pdf’s of the mean e-folding time for a) pre-1960 observations and their corre-
sponding model period M1, and b) post-1960 observations and the corresponding epoch M6.
In general, the model seems less predictable than nature. The gray lines refer to the full
2000-yr long CM2.1 simulation (dashed) and the full 100-yr record (solid). The dark green
dotted line refers to randomly selected 100-yr samples from an unforced 150,000-yr long ZC
simulation. Thin lines refer to consecutive 100-yr periods from the GCM (blue) and the ZC
model (green).
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Fig. 10 The difference of the composite 120-month Hovmöller diagrams of SST and up-
per ocean heat content anomalies for the events classified as more (green) or less (red)
predictable. Stippled areas denote statistical significance based on bootstrapping. The SST
difference plot is also field-significant at the 75% level, while the heat-content difference plot
is field-significant at the 97% level. Note the heat pile-up in the west Pacific five years prior
to the event, and the associated cold anomalies in the east Pacific.



36 Christina Karamperidou et al.

Fig. 11 a) SST and b) thermocline depth anomaly within 24 months of the peak of the
green (most predictable) and red (least predicable) events. Light green and red lines show
individual events, while thick lines are their composite.


